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Notation

Probabilistic models may have visible (or observed) variables y, latent variables,
(or hidden or unobserved variables or missing data) z and parameters θ.

Example: in a Gaussian mixture model, the visible variables are the observations,
the latent variables are the assignments of data points to mixture components and
the parameters are the means, variances, and weights of the mixture components.

The likelihood, p(y|θ), is the probability of the visible variables given the
parameters. The goal of the EM algorithm is to find parameters θ which
maximize the likelihood. The EM algorithm is iterative and converges to a local
maximum.

Throughout, q(z) will be used to denote an arbitrary distribution of the latent
variables, z. The exposition will assume that the latent variables are continuous,
but an analogue derivation for discrete z can be obtained by substituting integrals
with sums.
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The lower bound

Bayes’ rule:

p(z|y, θ) =
p(y|z, θ)p(z|θ)

p(y|θ)
⇔ p(y|θ) =

p(y|z, θ)p(z|θ)
p(z|y, θ)

.

Multiply and divide by an arbitrary (non-zero) distribution q(z):

p(y|θ) =
p(y|z, θ)p(z|θ)

q(z)

q(z)

p(z|y, θ)
,

take logarithms:

logp(y|θ) = log
p(y|z, θ)p(z|θ)

q(z)
+ log

q(z)

p(z|y, θ)
,

and average both sides wrt q(z):

logp(y|θ) =

∫
q(z) log

p(y|z, θ)p(z|θ)
q(z)

dz︸ ︷︷ ︸
lower bound functional F(q(z),θ)

+

∫
q(z) log

q(z)

p(z|y, θ)
dz︸ ︷︷ ︸

non-negative KL(q(z)||p(z|y,θ))

.
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The EM algorithm

From initial (random) parameters θt=0 iterate t = 1, . . . , T the two steps:

E step: for fixed θt−1, maximize the lower bound F(q(z), θt−1) wrt q(z). Since
the log likelihood logp(y|θ) is independent of q(z) maximizing the lower bound
is equivalent to minimizing KL(q(z)||p(z|y, θt−1)), so qt(z) = p(z|y, θt−1).

M step: for fixed qt(z) maximize the lower bound F(qk(z), θ) wrt θ. We have:

F(q(z), θ) =

∫
q(z) log

(
p(y|z, θ)p(z|θ)

)
dz−

∫
q(z) logq(z)dz,

whose second term is the entropy of q(z), independent of θ, so the M step is

θt = argmax
θ

∫
qt(z) log

(
p(y|z, θ)p(z|θ)

)
dz.

Although the steps work with the lower bound, each iteration cannot decrease the
log likelihood as

logp(y|θt−1)
E step
= F(qt(z), θt−1)

M step
6 F(qt(z), θt)

lower bound
6 logp(y|θt).
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EM as Coordinate Ascent in F
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Example: Mixture of Gaussians

In a Gaussian mixture model, the parameters are θ = {µj,σ2
j ,πj}j=1...k the

mixture means, variances and mixing proportions for each of the k components.
There is one latent variable per data-point zi, i = 1 . . .n taking on values 1 . . .k.

The probability of the observations given the latent variables and the parameters,
and the prior on latent variables are

p(yi|zi = j, θ) = exp
(
−

(yi−µj)
2

2σ2
j

)
/
√

2πσ2
j , p(zi = j|θ) = πj,

so the E step becomes:

q(zi = j) ∝ uij = πj exp(−(yi − µj)
2/2σ2

j )/
√

2πσ2
j ⇒ q(zi = j) = rij =

uij

ui
,

where ui =
∑k
j=1 uij. This shows that the posterior for each latent variable, zi

follows a discrete distribution with probability given by the product of the prior
and likelihood, renormalized. Here, rij is called the responsibility that component
j takes for data point i.
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Example: Mixture of Gaussians continued

The lower bound is

F(q(z), θ) =

n∑
i=1

k∑
j=1

q(zi = j)
[

log(πj) − 1
2 (yi − µj)

2/σ2
j −

1
2 log(σ2

j )
]
+ const.

The M step, optimizing F(q(z), θ) wrt the parameters, θ

∂F

∂µj
=

n∑
i=1

q(zi = j)
yi − µj

σ2
j

= 0 ⇒ µj =

∑n
i=1q(zi = j)yi∑n
i=1q(zi = j)

,

∂F

∂σ2
j

=

n∑
i=1

q(zi = j)
[ (yi − µj)2

2σ4
j

−
1

2σ2
j

]
= 0 ⇒ σ2

j =

∑n
i=1q(zi = j)(yi − µj)

2∑n
i=1q(zi = j)

,

∂[F + λ(1 −
∑k
j=1 πj)]

∂πj
= 0 ⇒ πj =

1
n

n∑
i=1

q(zi = j),

which have nice interpretations in terms of weighted averages.
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Clustering with MoG
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Clustering with MoG
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Appendix: some properties of KL divergence

The (asymmetric) Kullbach Leibler divergence (or relative entropy)
KL(q(x)||p(x)) is non-negative. To minimize, add a Lagrange multiplier enforcing
proper normalization and take variational derivatives:

δ

δq(x)

[ ∫
q(x) log

q(x)

p(x)
dx+ λ

(
1 −

∫
q(x)dx

)]
= log

q(x)

p(x)
+ 1 − λ.

Find stationary point by setting the derivative to zero:

q(x) = exp(λ− 1)p(x), normalization conditon λ = 1, so q(x) = p(x),

which corresponds to a minimum, since the second derivative is positive:

δ2

δq(x)δq(x)
KL(q(x)||p(x)) =

1
q(x)

> 0.

The minimum value attained at q(x) = p(x) is KL(p(x)||p(x)) = 0, showing that
KL(q(x)||p(x))

• is non-negative
• attains its minimum 0 when p(x) and q(x) are equal (almost everywhere).
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